\%3D radiation pattern of dipole antenna
\%radiation pattern of half wave dipole in three dimension
clear all
clc
while (1)
choice=menu(\{'Radiation pattern of dipole (select your choice)'\},'Three dimensional plot of dipole ','Two dimensional plot E-field','three dimensional Radiation of halfwave','two dim halfwave','exit')

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%
if choice == 1
theta=[0:0.1:2*pi];
phi=[0:0.1:2*pi];
kl=2*pi;
i0=1;
eta=120*pi;
urad=(eta*(i\mp@subsup{0}{}{\wedge}2)*((cos(kl*}\operatorname{cos}(theta-(pi/2))/2)-cos(kl/2))./sin(theta-(pi/2))).^2)/(8*(pi)^2)
udb=10*}\operatorname{log}10(urad)
```

\%normalizing in order to make U vector positive minu=min(udb); $u=u d b-m i n u$;
\%expanding theta, phi, u to span entire space
$u(1,1)=0$;
for $n=1$:length(phi)
theta($\mathrm{n},: \mathrm{I}=$ =theta(1,:);
end
phi=phi';
for m=1:length(phi)

```
    phi(:,m)=phi(:,1);
end
for k=1:length(u);
    u(k,:)=u(1,:);
end
[x,y,z]=sph2cart(phi,theta,u);
surf(x,y,z);
title('3D radiation pattern of dipole antenna');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif choice ==2
    %radiation pattern of dipole in two dimension
n=377;
lo=1;
r=10;
lambda=0.3;
k=(2*pi)/lambda;
L=lambda;
theta=0:0.01:2*pi;
E=j*n*Io* exp(-j*k*r)*(1/(2*pi*r))*((\operatorname{cos}(\mp@subsup{k}{}{*}\mp@subsup{L}{}{*}\mp@subsup{}{}{*}\operatorname{cos}(theta)/2)-\operatorname{cos}(\mp@subsup{k}{}{*}\textrm{L}/2))./sin(theta));
polar(theta, abs(E))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %radiation pattern of halfwave length dipole in 3 dimension
elseif choice==3
theta=[0:0.1:2*pi];
phi=[0:0.1:2*pi];
kl=1/2;
```

```
i0=1;
eta=120*pi;
urad=(eta*(i0^2)*((cos(pi*
udb=10*}\operatorname{log}10(urad)
```

\%normalizing in order to make U vector positive
minu=min(udb);
$u=u d b-m i n u ;$
\%expanding theta, phi,u to span entire space
$u(1,1)=0$;
for $\mathrm{n}=1$:length (phi)
theta(n,:)=theta(1,:);
end
phi=phi';
for $\mathrm{m}=1$:length(phi)
phi(:,m)=phi(:,1);
end
for $\mathrm{k}=1:$ length(u);
$u(k,:)=u(1,:) ;$
end
$[\mathrm{x}, \mathrm{y}, \mathrm{z}]=$ sph2cart(phi,theta, u);
$\operatorname{surf}(x, y, z)$;
title('3D radiation pattern of dipole antenna');
\%
\%
\% E-field of halfwavelength dipole
elseif choice==4
$\mathrm{n}=377$;

```
Io=1;
r=10;
lambda=0.3;
k=(2*pi)/lambda;
L=lambda/2;
theta=0:0.01:2*pi;
E=j*n*Io*exp(-j*k*r)*(1/(2* pi*r))*((cos(pi*cos(theta)/2))./sin(theta));
polar(theta, abs(E))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif choice==5
    break
end
end
```

